Evolution of Computer-Aided Design

While they may seem new to some, many of the computer-aided design programs we use today have been around for more than a decade, and virtually all trace their lineage to work begun more than 50 years ago.To get more news about cad, you can visit shine news official website.

Modern engineering design and drafting can be traced back to the development of descriptive geometry in the 16th and 17th centuries. Drafting methods improved with the introduction of drafting machines, but the creation of engineering drawings changed very little until after World War II.

During the war, considerable work was done in the development of real-time computing, particularly at MIT, and by the 1950s there were dozens of people working on numerical control of machine tools and automating engineering design. But it’s the work of two people in particular—Patrick Hanratty and Ivan Sutherland—who are largely credited with setting the stage for what we know today as CAD.
The Fathers of CAD
Hanratty is widely credited as “the Father of CADD/CAM.” In 1957, while working at GE, he developed PRONTO (Program for Numerical Tooling Operations), the first commercial CNC programming system. Five years later, Sutherland presented his Ph.D. thesis at MIT titled “Sketchpad, A Man-Machine Graphical Communication System.” Among its features, the first graphical user interface, using a light pen to manipulate objects displayed on a CRT.

The 1960s brought other developments, including the first digitizer (from Auto-trol) and DAC-1, the first production interactive graphics manufacturing system. By the end of the decade, a number of companies were founded to commercialize their fledgling CAD programs, including SDRC, Evans & Sutherland, Applicon, Computervision, and M&S Computing.

By the 1970s, research had moved from 2D to 3D. Major milestones included the work of Ken Versprille, whose invention of NURBS for his Ph.D. thesis formed the basis of modern 3D curve and surface modeling, and the development by Alan Grayer, Charles Lang, and Ian Braid of the PADL (Part and Assembly Description Language) solid modeler.

With the emergence of UNIX workstations in the early ’80s, commercial CAD systems like CATIA and others began showing up in aerospace, automotive, and other industries. But it was the introduction of the first IBM PC in 1981 that set the stage for the large-scale adoption of CAD. The following year, a group of programmers formed Autodesk, and in 1983 released AutoCAD, the first significant CAD program for the IBM PC.
The CAD Revolution
AutoCAD marked a huge milestone in the evolution of CAD. Its developers set out to deliver 80% of the functionality of the other CAD programs of the day, for 20% of their cost. From then on, increasingly advanced drafting and engineering functionality became more affordable. But it was still largely 2D.

That changed in 1987 with the release of Pro/ENGINEER, a CAD program based on solid geometry and feature-based parametric techniques for defining parts and assemblies. It ran on UNIX workstations—PCs of the time were simply not powerful enough—but it was a game changer. The later years of the decade saw the release of several 3D modeling kernels, most notably ACIS and Parasolids, which would form the basis for other history-based parametric CAD programs.

By the 1990s, the PC was capable of the computations required by 3D CAD. In 1995, when the first issue of Desktop Engineering was published, SolidWorks was released. It was the first significant solid modeler for Windows. This was followed by Solid Edge, Inventor, and others. The decade also saw many of the original CAD developers from the 1960s acquired by newer companies and a consolidation of the industry into four main players—Autodesk, Dassault Systèmes (which acquired SolidWorks in 1997), PTC, and UGS (now Siemens PLM)—along with a host of smaller developers.